Thứ Năm, 13 tháng 1, 2011

Đặt mua báo khoa học

Ngày nay, nhu cầu làm đồ án, luận văn, báo cáo, nghiên cứu, học tập,..........của chúng ta đang ngày càng phát triển và hòa nhập vào vòng quay chung của thế giới. Ở nước ngoài, các trường đại học đều mua những bài báo khoa học nên sinh viên không lo ngại nhiều đến vấn đề này. Riêng ở Việt Nam, cho đến nay chỉ có 3 trường đại học lớn mua được báo khoa học. Nhưng sinh viên phải đóng phí hàng tháng, hàng năm mới xem được báo, số lượng xem cũng có giới hạn và chuyên mục cũng hạn hẹp. Vì vậy, sinh viên Việt Nam chịu rất nhiều thiệt thòi.
Thấy vậy, chúng mình lập ra chuyên mục này nhằm giúp những ai đam mê nghiên cứu, nhất là giới sinh viên trẻ. Các trang web nổi tiếng về khoa học mà tất cả các nhà khoa học trên thế giới đều cần phải ghé thăm như:
wiley online library, sciencedirect, ieeexplore, American Chemical Society, springerlink, ............              
Do phải liên hệ với các bạn ở nước ngoài, các thư viện báo khoa học, nên nếu các bạn có nhu cầu lấy báo khoa học với số lượng lớn để nghiên cứu, làm luận án thì phải trả phí. Chúng tôi sẽ cố gắng hỗ trợ  mức phí hợp lý nhất cho các bạn. Mức phí sẽ thỏa thuận, tùy thuộc vào số lượng và loại báo các bạn yêu cầu.
Để tạo sự yên tâm và bảo mật tên tuổi của các bạn: các bạn có thể trả phí trước 50% sau khi đã thỏa thuận phí hợp lý, chúng tôi sẽ gởi 50% số báo và nếu thấy đúng với thỏa thuận, các bạn gởi phí còn lại, sau đó chúng tôi gởi số báo còn lại. Để bảo mật các bạn gởi yêu cầu đến email này:

Chủ Nhật, 2 tháng 1, 2011

Khoa học và công nghệ nano: trong một thế giới cực nhỏ

Khoa học và công nghệ nano: trong một thế giới cực nhỏ

Tác giả: Trương Văn Tân
1. Khoa học và công nghệ nano: trong một thế giới cực nhỏ
"There's plenty of room at the bottom" Richard Feynman (Nobel Vật lý 1965) Nano có nghĩa là nanomét (ký hiệu: nm) bằng một phần tỉ mét (1/1.000.000.000 m), một đơn vị đo lường để đo kích thước những vật cực nhỏ. Cơ cấu nhỏ nhất của vật chất là nguyên tử có kích thước: 0,1 nm, phân tử là tập hợp của nhiều nguyên tử: 1 nm, vi khuẩn: 50 nm, hồng huyết cầu: 10.000 nm, tinh trùng: 25.000 nm, sợi tóc: 100.000 nm, đầu cây kim: 1 triệu nm và chiều cao con người: 2 tỉ nm.
Khoa học và công nghệ nano (nanoscience and nanotechnology) là một bộ môn khảo sát, tìm hiểu đặc tính những vật chất cực nhỏ, để thao tác (manipulate), chồng chập những vật chất này, xây dựng vật thể to hơn. Người ta gọi phương pháp xây dựng từ vật nhỏ đến vật to và to hơn nữa là phương pháp "từ dưới lên" (bottom-up method). Sự xuất hiện của khoa học và công nghệ nano đang cách mạng lề lối suy nghĩ và phương pháp thiết kế toàn thể các loại vật liệu từ dược phẩm trị liệu đến các linh kiện điện tử với những đặc tính đã định sẵn ngay từ thang phân tử.
Một sản phẩm của “công nghệ nano” là cơ thể con người. Con người, động vật và thực vật là do những nguyên tố hoá học tạo nên. Giả dụ có một phương pháp có thể làm phân rã cơ thể con người đến tận thành phần cấu tạo cơ bản, ta sẽ thu lượm được vài chục lít khí oxygen, hydrogen và nitrogen; một đống than (carbon), calcium, muối; vài nhúm nguyên tố vô cơ như sulfur, phosphorous, kim loại như sắt, magnesium, sodium và hơn một chục nguyên tố linh tinh khác. Nếu đánh giá theo tiêu chuẩn thương mãi thì toàn bộ các nguyên tố hoá học này gần như không có giá trị. Tuy nhiên, tạo hoá đã biết dùng phương pháp mà bây giờ ta gọi là "công nghệ nano" để biến những nguyên tố bất động, vô tri trở thành một sinh vật có ý thức, có khả năng sinh sản, biết suy nghĩ, biết đi, biết bò, biết bơi, biết vui, biết sướng, biết hờn dỗi, biết hỉ nộ ái ố... Giá trị thương mãi của sinh vật thông minh này là vô giá!

"Có rất nhiều chỗ trống ở miệt dưới"
Tiến sĩ Richard Feynman (1918-1988, giải Nobel Vật lý 1965) là một thiên tài vật lý. Năm 1959, ông đã có một dự đoán tài tình về công nghệ nano trong một bài nói chuyện với tựa đề "There's plenty of room at the bottom" (Có rất nhiều chỗ trống ở miệt dưới) tại California Institute of Technology (Caltech, Mỹ) [1] . Ông là người có tính hài hước, bình dị, thích bông đùa, tếu táo. Sinh thời ông là một tay trống nhạc Samba, thích hoà đồng với sinh viên. Điều nầy cũng phản ánh qua nhan đề của bài nói chuyện. Ông chơi chữ; "bottom" có nghĩa là cái mông đít, bàn toạ, lại còn có nghĩa là cái đáy, cái tận cùng. "Miệt dưới" trong tiếng Việt mang đầy đủ hai ý nghĩa nầy.
Đọc qua nhan đề bài nói chuyện, không ít người trong thính giả hoang mang hỏi: "Ông Feynman ơi! Chắc ông lại đùa nữa rồi?". Nhưng ông Feynman không đùa, ông nói chuyện nghiêm túc. Ông đặt vấn đề làm sao có thể chứa toàn bộ 24 quyển Bách khoa Từ điển Britannica với tổng cộng 25.000 trang giấy trên đầu cây kim có đường kính 1,5 mm. Theo Feynman, khả năng này hiện hữu. Thính giả ngơ ngác, vì ở năm 1959 dụng cụ điện tử tiên tiến nhất là cái tivi điều khiển bằng ống chân không mà mỗi lần bật lên phải đợi vài phút hình ảnh mới xuất hiện. Cũng ở thời điểm này, ông chủ hãng Sony (Nhật Bản), Morita Akio, vừa tung ra thị trường thế giới đài bán dẫn (radio transistor) bỏ túi dùng pin. Từ cái radio to đùng với ống chân không dùng điện nhà đến cái radio bỏ túi là một thành quả ngoạn mục của kỹ thuật thu nhỏ (miniaturization) đương thời. Có phải là vấn đề của Feynman đưa ra là một chuyện không tưởng? Feynman trấn an người nghe là ông không "xạo sự", tất cả những điều ông nói đều khả thi, theo đúng và nằm trong phạm vi cho phép của những qui luật vật lý. Như vậy, Feynman đã thuyết phục thính giả của ông bằng cách nào?
Ông giải thích bằng con số rất đơn giản. Muốn đặt 25.000 trang giấy trên mặt của đầu kim ta chỉ cần thu nhỏ 25.000 ngàn lần toàn thể bộ bách khoa từ điển. Có nghĩa là những chữ in cũng phải thu nhỏ 25.000 lần. Trong các mẫu tự, dấu chấm trên đầu chữ "i" là ký hiệu nhỏ nhất. Sau khi thu nhỏ 25.000 lần, dấu chấm vẫn còn có một kích cỡ của tập hợp 1000 nguyên tử. Con số 1000 nguyên tử còn rất to và cho rất nhiều lựa chọn để con người thao tác (manipulate) bằng một phương pháp vật lý nào đó. Feynman tiếp tục luận điểm của mình. Ông phỏng chừng có 24 triệu quyển sách trong các thư viện trên toàn thế giới. Nếu tất cả được thu nhỏ 25.000 lần thì toàn thể sách viết biểu hiện tri thức của loài người trên quả đất sẽ được "in" vỏn vẹn trên 35 trang giấy A4! Feynman còn nói đến khả năng làm những sợi dây dẫn điện phân tử và các linh kiện điện tử như transistor ở thang phân tử. Ông nói đến công cụ lớn làm nên những công cụ nhỏ hơn và nhỏ hơn nữa để giúp con người di dời, thao tác và điều khiển nguyên tử và phân tử theo ý mình.
Mục đích bài nói chuyện của Feynman không phải chỉ dừng ở kỹ thuật thu nhỏ (miniaturization) mà còn phác hoạ khả năng hình thành một nền công nghệ mới, trong đó con người có thể di chuyển, chồng chập các loại nguyên tử, phân tử để thiết kế một dụng cụ cực kỳ nhỏ ở thang vi mô (microscopic) hay thiết kế một dụng cụ ngay từ cấu trúc phân tử của nó. Phương pháp đó ở thế kỷ 21 được người ta gọi là "công nghệ nano" với cách thiết kế từng nguyên tử một "từ dưới lên" (bottom-up method). Thật ra, kỹ thuật thu nhỏ hay là phương pháp "từ trên xuống" (top-down method) đã là xương sống của việc xây dựng và phát triển công nghiệp điện tử từ hơn 50 năm qua. Transistor là một linh kiện chính trong các vi mạch của các loại dụng cụ điện tử. Nó là "linh hồn" từ cái máy tính tay (calculator) khiêm tốn đến cái máy vi tính phức tạp. Phương pháp "từ trên xuống" đã được áp dụng để thu nhỏ transistor có độ to ban đầu khoảng vài cm ở thời điểm phát minh (năm 1947) cho đến ngày hôm nay thì đến bậc nanomét; vài triệu lần nhỏ hơn.

"Định luật" Moore
Liên quan đến kỹ thuật thu nhỏ, Gordon Moore, một trong những nhà sáng lập của công ty Intel (Mỹ), trong một bài viết vào năm 1965 về sự thu nhỏ, đã tiên đoán bằng trực giác của một nhà khoa học là cứ mỗi hai năm, mật độ của các transistor được nhồi vào một chip cho máy vi tính sẽ tăng gấp đôi nhờ vào kỹ thuật chế biến thu nhỏ và đặc tính của nguyên tố silicon. Người ta đặt cái tên "Định luật Moore” (Moore's law) cho sự tiên liệu này, dù nó không phải là một định luật dựa theo lý thuyết trong ý nghĩa thông thường. Cũng vào thời điểm 1965, Intel chế tạo một cái chip có diện tích vài cm2 chứa 30 transistor. Chip này đủ "thông minh" để làm công việc đơn giản cộng trừ nhân chia thay cho cái bàn toán Tàu. Đây là bước đầu thành công cho thấy sự tiến bộ của việc thu nhỏ từ cm đến mm. Chip của máy vi tính hiện nay cũng có một diện tích vài cm2 nhưng chứa vài chục triệu đến trăm triệu transistor. Càng nhiều transistor thì hiệu năng của máy vi tính càng nhanh, càng cao và càng ít hao năng lượng.
Định luật Moore đã đúng hơn 40 năm qua kể từ năm 1965 và sẽ tiếp tục đúng trong vòng 15 năm tới. Tuy nhiên, đặc tính thu nhỏ của silicon sẽ đến một mức giới hạn và dừng lại ở một kích thước nhất định nào đó. Để giải quyết khó khăn này, tháng 11 năm 2007 Intel tung ra thị trường thế giới một transistor mới với kích cỡ 45 nanomét, dùng một nguyên tố gọi là hafnium để thay thế silicon. Transistor này nhỏ đến mức người ta có thể xếp 2000 transistor này trong một khoảng không gian dày bằng sợi tóc. Hằng tỉ transistor được tập tích trong một chip vi tính cũng chỉ to vài cm2. Muốn nhìn các transistor này ta cần kính hiển vi điện tử với độ phóng đại vài trăm nghìn lần.
Với những thành quả ngoạn mục của phương pháp thu nhỏ "từ trên xuống" trong công nghiệp điện tử, người ta không khỏi thắc mắc tại sao lại phải cần đến công nghệ nano "từ dưới lên", vì dù sao các công cụ cũng đã đạt đến thứ nguyên nanomét? Vấn đề chính của các transistor thu nhỏ là sự phát nhiệt. Càng được thu nhỏ, transistor càng nóng. Sự phát nhiệt làm tổn hại và giảm công năng của các dụng cụ điện tử. Nếu tò mò một chút, ta thấy trong các máy vi tính lúc nào cũng có chiếc quạt gió để làm nguội chip. Nhu cầu thu nhỏ hơn nữa và tránh sự phát nhiệt cần phải nhờ đến giải pháp "từ dưới lên" của công nghệ nano và khái niệm "phân tử điện tử học" (molecular electronics) ra đời. Một thí dụ của phân tử điện tử học là transistor phân tử (molecular transistor). Trong những năm gần đây, nhiều nhóm nghiên cứu dùng phân tử ống than nano làm vật liệu để chế tạo transistor phân tử có kích thước vài nanomét. Đây là một transistor đã đụng đến "tận đáy" của vật chất. Ngoài ra, ống than nano có đặc tính dẫn điện đạn đạo (ballistic conductivity) mà không gây sự phát nhiệt. Việc nghiên cứu transistor ống than nano đang tiến triển khả quan cho nhiều hứa hẹn. Người ta dự đoán nếu transistor ống than nano được dùng cho máy vi tính thì máy sẽ thu nhỏ bằng cục đường uống cà phê (2 x 2 x 2 cm)!

Công nghệ nano và sinh học
Những dự đoán thiên tài của giáo sư Feynman gần 50 năm trước không còn là một "khả năng" mà đã trở thành sự thật ở thế kỷ thứ 21. Thật ra, khoa học và công nghệ nano mở rộng một thế giới mới cho con người, nhưng chúng đã là một "ngành" rất xa xưa của thiên nhiên. Từ những tế bào mang sự sống đầu tiên thành hình trên quả đất hơn 3 tỉ năm trước cho đến sự xuất hiện của loài linh trưởng homo sapiens có ý thức và linh hồn, trải qua hằng trăm triệu năm tạo hoá đã dùng công nghệ nano thao tác các nguyên tử và phân tử vô tri, gieo mầm cho sự sống, tạo ra muôn loài sinh linh biết thích ứng với môi trường sống xung quanh, trong đó có con người - đỉnh cao của quá trình tiến hoá - với trí thông minh kỳ diệu. Đây là quá trình thiết kế "từ dưới lên", dùng những thành phần đơn giản nhất để cuối cùng hoàn thành một cấu trúc phức tạp nhất trong những điều kiện bình thường nhất (nhiệt độ 0 - 40 mC, áp suất 1 atm của khí quyển).
Một thí dụ khác trong phạm vi nhỏ hơn có quá trình phát triển và tiến hoá ngắn hơn cũng theo phương pháp "từ dưới lên" là quá trình thụ tinh, tạo phôi rồi phát triển thành sinh vật và con người. Các tế bào phôi chứa phân tử DNA mang những thông tin di truyền và là "nhà máy" sản xuất các tập hợp phân tử sinh học điển hình là các loại protein với các chức năng khác nhau cần thiết cho một sinh vật có cảm giác và linh hồn. Quá trình tiến triển từ phôi đơn giản vô tri đến cấu tạo hài hoà của một con người có ý thức, cảm giác chỉ cần 40 tuần. Đây là một khả năng kỳ diệu của tạo hoá!
Các loại protein là những thí dụ cụ thể của các loại động cơ, công cụ điện (electrical device) sinh học ở thứ nguyên nanomét. Hay nói một cách khác, đây là những phân tử hay tập hợp phân tử biết chuyển hoán năng lượng thành cơ năng để đi, bò, nhún nhảy, quay tròn, truyền đạt tín hiệu điện, đã hiện hữu ngay trong các loài vi khuẩn hoang sơ có một cấu trúc sinh học đơn giản từ 3 tỉ năm trước. Con bào ngư cũng biết lợi dụng công nghệ nano làm vỏ để bao bọc thân thể. Giữa vỏ bào ngư và viên phấn viết bảng có sự giống nhau và khác nhau. Cả hai đều là calcium carbonate (CaCO3) nhưng vỏ bào ngư là một vật liệu rất cứng, chống nước mặc dù độ dày chỉ khoảng vài mm, trong khi viên phấn có thể bị bẻ gãy dễ dàng và tan trong nước. Vỏ bào ngư có độ cứng 3.000 lần lớn hơn viên phấn. Nguyên nhân là sự khác biệt của cấu trúc vi mô. Con bào ngư như một kỹ sư xây dựng thiên tài tạo ra vỏ có cấu trúc nano bằng cách trải từng lớp calcium carbonate ở độ dày 500 - 800 nanomét (1/100 sợi tóc) (Hình 1) như anh thợ nề lót từng viên gạch tường, trong khi viên phấn chỉ là những hạt calcium carbonate được ép vào nhau vô thứ tự. Kinh nghiệm thường ngày cho thấy, khi dùng búa đập vào mảng bức tường theo chiều dọc rất khó làm tan nát các viên gạch. Tương tự, khi có một va đập vào vỏ bào ngư, vết nứt không xuyên thủng qua vỏ nhưng nó sẽ đi dọc theo đường biên giữa các mảng calcium carbonate, nhờ vậy vỏ được bảo toàn. Cấu trúc này được các nhà khoa học mô phỏng để làm áo giáp và mũ cối quân đội.

Bài học vỏ bào ngư đã cho các nhà khoa học một nhận thức quan trọng là mặc dù cùng một nguyên tố cấu thành nhưng tuỳ phương cách thiết kế ở thang vi mô, vật liệu sẽ có những đặc tính khác nhau. Sinh vật đã có một lịch sử tiến hoá hàng trăm triệu năm, là mô hình hoàn thiện nhất để con người bắt chước. Thật ra, mô phỏng từ Mẹ thiên nhiên không phải là điều xa lạ đối với con người. Loài người nhìn chim muông để tạo ra phi cơ bay trong bầu trời, phi thuyền bay vào vũ trụ; nhìn kình ngư để tạo ra tàu thuỷ lướt sóng, tàu ngầm vượt lòng đại dương. Nhưng ở thế kỷ 21, sự mô phỏng không còn giới hạn ở cái phiến diện bên ngoài mà đã đi vào "tận đáy" của các hệ thống sinh học. Thật vậy, sự vận hành của các động cơ và công cụ sinh học ở thang phân tử đã đặt một câu hỏi lớn cho các nhà khoa học là con người có thể nào tận dụng kỹ thuật nhân tạo để mô phỏng thiên nhiên, tạo ra những động cơ và công cụ ở thứ nguyên nanomét. Những thách thức này đã thúc đẩy sự thành hình của nền khoa học và công nghệ nano.
Mặc dù vào thập niên 70 của thế kỷ trước đã lác đác xuất hiện vài quyển sách giáo khoa về sinh học vật lý viết bằng tiếng Anh và tiếng Nhật, nhưng mãi cho đến cuối thế kỷ 20 và đầu thế kỷ 21 các nhà vật lý mới chú ý đến các loại động cơ, dụng cụ, chất xúc tác sinh học siêu nhỏ ở mức vi mô. Theo thiển kiến của người viết, nguyên nhân chính là một bức tường vô hình chắn sự giao lưu của hai ngành sinh học và vật lý. Các nhà vật lý thường ít chuyên tâm đến các ngành khác. Nếu có thì cũng chỉ đụng đến ngành hoá, trong đó bộ môn hoá lý (physical chemistry) và hoá học lượng tử (quantum chemistry) đã trở thành hai nhịp cầu nối liền vật lý và hoá học. Mặt khác, các nhà sinh học biết rất ít về những qui luật vật lý, có khuynh hướng tránh xa toán học, họ chỉ quan sát các hiện tượng mang nhiều tính định tính hơn là định lượng. Tuy nhiên, sự thành hình của nền công nghệ nano đã kéo hai ngành vật lý và sinh học xích lại gần nhau. Sự tương tác giữa vật lý, hoá học và sinh học là một nền tảng vững chắc và cần thiết cho khoa học và công nghệ nano.

"Trăm nghe, trăm thấy và một sờ"
Sau bài nói chuyện nổi tiếng mang đầy tính thuyết phục của Feynman, hàng ngàn khoa học gia trong 50 năm qua đã nghiên cứu, thu thập tri thức, sáng tạo ra nhiều phương pháp, mò mẫm đi vào thế giới cực nhỏ để "vào hang hùm bắt cọp con"! "Cọp con" ở đây là những nguyên tử và phân tử mà các nhà khoa học muốn nhìn thấy, muốn nắm bắt, di chuyển chúng để theo chủ ý của mình và cuối cùng thiết lập những đặc tính cho một ứng dụng nào đó.
Kể từ khi khái niệm về nguyên tử trong khoa học tự nhiên ra đời cách đây hơn 100 năm, người ta đã xác nhận nguyên tử là phần tử nhỏ nhất của vạn vật, nhưng trên thực tế chưa ai nhìn thấy được cho đến năm 1981. Vào năm này, hai nhà nghiên cứu của công ty IBM, G. Binning và H. Rohrer, tuyên bố với thế giới là hai ông đã "nhìn" thấy nguyên tử bằng kính hiển vi quét đường hầm (scanning tunelling microscope, STM) do hai ông phát minh và đoạt giải Nobel cho thành quả này.
"Trăm nghe không bằng một thấy", nhưng con người vẫn chưa thoả mãn. Sự tò mò của con người thôi thúc bắt đôi bàn tay phải táy máy hành động, vì "Trăm thấy không bằng một sờ"! Ngoài việc nhìn thấy nguyên tử, STM còn cho khả năng di chuyển nguyên tử. Năm 1990, D. Eigler và E. Schweizer cũng tại IBM lần đầu tiên dùng đầu dò (tip) của STM để di chuyển từng đơn vị nguyên tử theo ý của mình. Lời tiên đoán của Feynman năm 1959 nay đã thành hiện thực. Thí nghiệm của của Eigler và Schweizer đã được thực hiện trong chân không và nhiệt độ cực thấp (-270 ệC). Hai ông đã di chuyển 35 nguyên tử xenon để tạo ra 3 mẫu tự "IBM" (Hình 2). Chiều ngang của toàn thể 3 mẫu tự này chỉ có 3 nanomét. Đây là mẫu tự nhỏ nhất của thế giới loài người!
Việc di chuyển nguyên tử là việc đơn giản nhất, nhưng với kỹ thuật hiện tại vẫn còn rất khó khăn. Vì vậy, kéo hai nguyên tử kết hợp thành phân tử rồi chồng chập các phân tử lên nhau tạo thành một động cơ hay một công cụ siêu nhỏ như thiên nhiên đã làm là một điều khó khăn, nếu không muốn nói là hoang tưởng ở thời điểm hiện tại.

Động cơ nano nhân tạo
Các nhà hoá học có một cách làm khác. Họ là những chuyên gia hiểu rất rõ về các liên kết hoá học (chemical bonding). Họ biết từng đặc tính của nguyên tử, từ đó tổng hợp (synthesize) bằng nhiều phương pháp cho ra các sản phẩm phân tử tạo ra các loại vật liệu hơn hai trăm năm nay. Họ không lôi kéo một cách "vật lý" các nguyên tử để tạo thành phân tử hay hợp chất, nhưng họ trộn dung dịch này với dung dịch kia, cho vào ống nghiệm lắc lắc xoay xoay. Với bàn tay "phù thuỷ", họ có thể cắt một nguyên tử ra khỏi một phân tử mẹ hay gắn vào một nhóm nguyên tử khác, hoặc kết hợp các phân tử khác nhau trở thành một phân tử mới với một đặc tính định sẵn bằng những phản ứng hoá học rất hiệu quả. Ở một khía nào đó, họ đã tạo ra những vật liệu bằng những thao tác nano, di dời các nguyên tử bằng các phản ứng hoá học. Từ truyền thống lâu đời này, các nhà hoá học ở một vị trí lý tưởng để chế tạo ra những động cơ hay công cụ phân tử nhân tạo.
Tuy nhiên, ta phải khiêm cung nói rằng con người đang tập tành bắt chước tạo hoá làm những công cụ phân tử ở mức sơ đẳng nhất. Nói cho dễ hiểu, trong khi con người đang cưa đẽo những khúc gỗ làm chiếc xe cút kít thì tạo hoá đã hoàn bị một chiếc xe Mercedes hạng sang! Dù là một cỗ máy to đùng hay là tập hợp phân tử, động cơ chẳng qua là một công cụ chuyển hoán năng lượng; từ hoá năng hay điện năng thành cơ năng. Một động cơ phân tử sinh học biết xoay, biết đi, biết bò, biết ứng xử với môi trường xung quanh là một tập hợp phân tử cực kỳ phức tạp. Tinh trùng là một thí dụ. Hiện tại, tạo ra một động cơ nano (phân tử) nhân tạo với phương pháp nano "từ dưới lên" tương tự như hệ thống sinh học là một việc không tưởng. Nhưng các nhà hoá học đã có khả năng tạo những bộ phận đơn giản cho động cơ nano. Việc đầu tiên là tổng hợp những siêu phân tử (supramolecule) làm các bộ phận cấu thành, sau đó "ráp" các bộ phận nano này thành động cơ. Trong mười năm qua, họ đã tổng hợp các bộ phận phân tử có tác dụng như một bật điện, khối quay (rotor), cánh quạt, trục, phanh, bánh răng, bánh cóc (rachet) v.v... [2] . Nhiên liệu cho các động cơ nổ là xăng, cho động cơ nano nhân tạo là ánh sáng mặt trời. Đương nhiên, đây là những động cơ rất đơn giản so với động cơ phân tử sinh học nhưng cũng đòi hỏi nhiều cố gắng và kiến thức trong hoá hữu cơ và quang hoá học (photochemistry).
Khi một vật thể vi mô có kích thước nanomét hay thậm chí micromét (độ dày sợi tóc là 0,1 mm = 100 micromét = 100.000 nm), những hiện tượng ta không thấy hoặc không quan trọng ở thế giới bình thường vĩ mô (macroscopic) sẽ xuất hiện hoặc trở nên quan trọng ở thế giới vi mô. Chẳng hạn, khi các vật thể ở đơn vị mét (vĩ mô) được thu nhỏ đến micromét hay nanomét, diện tích bề mặt sẽ tăng từ một triệu đến một tỉ lần - những con số cực kỳ lớn. Sự gia tăng bề mặt rất hữu ích trong các chất xúc tác cho phản ứng hoá học, ứng dụng quang tổng hợp và chuyển hoán năng lượng mặt trời. Nhưng cũng vì sự gia tăng bề mặt, lực kéo của môi trường xung quanh (như của nước hay không khí), sức căng bề mặt nhanh chóng gia tăng làm cản trở sự di động của vật này. Mặt khác, bằng mô hình vi tính (computer model) người ta dự đoán rằng lực ma xát gần như zero trong cấu trúc nano. Điều này rất quan trọng cho sự bền bỉ, ít hao mòn vì không ma xát của các bộ phận di động, xoay, nhảy, bước của động cơ nano. Dù lực ma xát zero chưa được kiểm chứng bằng thực nghiệm, nhưng khi ta nhìn lại cơ thể con người và so với các loại cỗ máy nhân tạo, phải công nhận rằng "bộ máy" con người từ mực vi mô đến vĩ mô ít bị bào mòn và "xài" tốt, ít nhất cũng đến cái tuổi "thất thập cổ lai hi"!
Ngoài ra, trong thế giới cực nhỏ nano, cơ học cổ điển Newton áp dụng cho các vật vĩ mô trở nên vô hiệu và chúng ta đi vào mảnh đất của cơ học lượng tử. Một quả banh tennis khi va vào một bức tường thì sẽ bật trở lại. Đây là một việc hiển nhiên thường ngày. Nhưng khi quả banh thu nhỏ đến kích thước nano thì có thể đi xuyên bức tường giống như một bóng ma trong phim kinh dị! Đây là một hiện tượng vật lý thật sự và được gọi là hiệu ứng đường hầm Esaki (Esaki's tunnelling effect) - một hiệu ứng cơ bản trong cơ học lượng tử. Hiệu ứng này cho điện tử nhiều ứng dụng đặc biệt nhờ khả năng đi xuyên qua lá chắn cách điện. Vì vậy, những linh kiện điện tử ở thang nano không những làm gia tăng mật độ tập tích mà còn tạo ra một môi trường cho điện tử di chuyển tự do, dẫn đến sự giảm nhiệt và gia tăng hiệu suất.
Về mặt lý thuyết, cơ học lượng tử là một cơ sở vững chắc để dự đoán và giải thích các hiện tượng của thế giới nano. Mặt khác, nhiệt động học (thermodynamics) là một bộ môn cổ điển của vật lý từ thế kỷ 19, khảo sát các hiện tượng vĩ mô thông qua các biến số như nhiệt độ, áp suất và năng lượng. Dù bộ môn này chỉ dựa trên "hiện tượng luận" (phenomenological) nhưng nó đã đưa ra những định luật cực kỳ chính xác cho việc lý giải từ sự cân bằng hoá học đến cơ cấu vận hành và hiệu suất của động cơ nổ.
Trong lĩnh vực sinh học, hiện nay người ta vẫn chưa hiểu rõ cơ chế hoạt động của động cơ phân tử, vì vậy chưa định lượng được hiệu suất chuyển hoán năng lượng của các loại động cơ tí hon này [3] . Muốn trả lời câu hỏi này ta phải cần đến nhiệt động học. Nhưng liệu các định luật khoa học áp dụng cho thế giới bình thường vĩ mô có thể kéo dài đến tận đáy của thế giới vi mô (nano)? Chúng ta chưa có một câu trả lời dứt khoát vì hai lý do. Thứ nhất, đối tượng khảo sát của nhiệt động học phải ở trong một môi trường cô lập. Điều này đúng ở các động cơ nổ, trong đó piston chỉ hoạt động trong ống xy lanh có nhiệt độ và áp suất riêng mà không bị ảnh hưởng bởi thế giới bên ngoài. Ngược lại, động cơ sinh học hoạt động trong một tế bào là một hệ thống mở giao lưu với môi trường xung quanh. Thứ hai, nhiệt động học khảo sát một tập hợp hàng tỉ phân tử. Thí dụ, động cơ chiếc xe Toyota Camry 2 lít chứa khoảng 1022 (10.000 tỉ tỉ) phân tử. Làm sao có thể ngoại suy các định luật nhiệt động học của một tập hợp hằng tỉ phân tử trở thành định luật cho một vài phân tử? Đây là một thử thách mà các nhà khoa học phải trực diện để hoàn bị cách kiến giải và thực hành của khoa học và công nghệ nano. Nếu việc ngoại suy này đạt được kết quả mong muốn, nhiệt động học sẽ cho ta biết những cơ chế chuyển hoán năng lượng tạo ra sự chuyển động từ những động cơ thật to như đầu máy xe lửa đến các động cơ thật nhỏ trong tế bào sinh học. Có thể lúc đó các nhà khoa học sẽ tiến rất gần đến việc thiết lập "lý thuyết cho tất cả mọi vật" (theory of everything) từ cực lớn đến cực nhỏ, điều mà các nhà vật lý lý thuyết từng mơ ước hơn 100 năm nay.

Tiềm năng ứng dụng và nguy hiểm ẩn tàng
Công nghệ là một quá trình liên quan đến áp dụng kiến thức khoa học vào việc chế tạo các sản phẩm kinh tế tạo ra sự giàu có, các phương tiện để phục vụ con người hay bảo vệ sự sống còn của một đất nước. Cho đến thời điểm hiện tại động cơ và công cụ nano vẫn là một khái niệm trong phòng nghiên cứu, chưa là một thực thể trên thương trường. Tuy nhiên, về mặt vật liệu và cấu trúc nano đã có sự tiến triển rõ rệt vì nhu cầu đổi mới của các nền công nghệ hiện có. Ống than nano là vật liệu nano được chú trọng nhiều nhất vì đây là vật liệu mới cho nhiều khả năng chế tạo các dụng cụ với điện tính và cơ tính siêu việt, có tiềm năng ứng dụng rộng lớn vào cuộc sống đời thường, kể cả trong y học và quốc phòng. Nhu cầu này thúc đẩy sự phát triển vượt bực trong kỹ thuật sản xuất, làm giá của ống than nano giảm hơn 1.000 lần trong 10 năm qua, từ vài trăm đô la Mỹ xuống đến vài xu cho một gram.
Các cấu trúc nano của ống than nano được hình thành có hình dạng như một cánh rừng nhiệt đới trong đó các ống nano mọc thẳng như thân cây. Với hình dạng này, ống than nano có thể đạt đến diện tích bề mặt 1.000 m2 (bằng một miếng đất để xây nhà) cho một gram vật liệu, rất cần thiết khi dùng làm bộ cảm ứng (sensor). Thể xốp (porous) titanium dioxide (TiO2) với những lỗ nano có diện tích bề mặt 200 - 500 m2 (bằng một sân tennis) cho một gram TiO2. Tinh thể nano (hay là chấm lượng tử, quantum dot) silicon đã được chế tạo thành công trong phòng thí nghiệm. Thể xốp nano titanium dioxide và chấm lượng tử silicon là những cấu trúc nano được thiết kế cho pin mặt trời tương lai.
Động cơ và các công cụ nano trong lĩnh vực phân tử điện tử học cho thấy nhiều tiềm năng ứng dụng nhưng hiện nay vẫn còn là những đề tài nghiên cứu cơ bản. Việc thương mãi hoá các sản phẩm nano có thể thực hiện trong vòng 10 đến 20 năm và thời gian này kéo dài hay rút ngắn tuỳ vào chính sách đầu tư vào nghiên cứu của chính phủ. Áp dụng vào y học là một điểm nổi bật trong các ứng dụng của sản phẩm nano. Đặc tính tải thuốc (drug delivery) đến các tế bào và chẩn bệnh trong cơ thể con người của các loại vật liệu y học được khảo sát từ nhiều năm qua. Trong lĩnh vực này, động cơ nano có tiềm năng rất lớn. Động cơ cần được điều khiển đi theo hướng được chỉ định như tinh trùng biết tiến về noãn sào trong quá trình thụ tinh, biết cảm ứng và có khả năng nhận thuốc và nhả thuốc vào tế bào nhiễm bệnh ở một "địa chỉ" nhất định. Ống than nano được dùng làm giàn giáo cho tế bào xương phát triển để hàn các vết gãy nứt của xương. Ống than nano có khả năng xuyên thủng màn tế bào như cây kim nano, có thể là một công cụ để tải thuốc, vắc xin, dược liệu chống ung thư vào các tế bào nhiễm bệnh [4] .
Các ứng dụng của công nghệ nano được đặc biệt lưu tâm trong lĩnh vực quốc phòng. Có lẽ cũng vì lý do này, ngân sách dành cho nghiên cứu cơ bản hay ứng dụng trong công nghệ nano đạt đến hàng tỉ đô la hằng năm ở các nước tiên tiến. Các vật liệu mới được hình thành theo phương pháp "từ dưới lên" sẽ có ứng dụng rộng khắp trong công nghệ quốc phòng. Giống như tiến trình tạo vỏ bào ngư, các nhà khoa học nghiên cứu các loại vật liệu nano tạo ra kim loại, ceramic, polymer vừa mỏng, vừa nhẹ, vừa siêu cứng cho chiến hạm, xe tăng, máy bay và áo giáp cá nhân có khả năng chống bom đạn. Những loại vật liệu "tàng hình" thông minh biết hấp thụ hay phản hồi radar tuỳ lúc, hay biết đổi màu giống môi trường xung quanh đang được nghiên cứu để tối ưu hoá hiệu quả tàng hình và nguỵ trang. Transistor phân tử và transistor sinh học (biotransistor) dùng DNA là những đề tài nghiên cứu quan trọng trong lĩnh vực truyền thông quốc phòng.

Vật liệu và sản phẩm nano là con dao hai lưỡi. Vì là những vật cực nhỏ, chúng có thể là phương tiện trị liệu nhưng cũng là mầm mống gây bệnh ở mức tế bào. Trên phương diện "sức khoẻ và an toàn chức nghiệp" (occupational health and safety), người ta vẫn chưa hiểu rõ những tác hại nào có thể xảy ra khi hạt nano đi vào cơ thể mà không bao giờ bị phân huỷ theo qua trình chuyển hoá tự nhiên (metabolism). Hiện nay vẫn chưa có một quy định chặt chẽ nào cho việc sử dụng và xử lý các sản phẩm vật liệu nano, điển hình là ống than nano và fullerene C60. Song song với những tiến bộ khoa học, khả năng tác hại của những mối nguy hiểm ẩn tàng cần phải đặc biệt cảnh giác.
*
Đã gần nửa thế kỷ từ ngày Feynman thốt ra những lời dự đoán thiên tài, nền công nghệ nano dần dần được thành hình và đang đưa loài người đến cuộc cách mạng kỹ nghệ lần thứ hai. Về mặt lý thuyết, cơ học lượng tử - bộ môn vật lý của thế giới vi mô - đã khẳng định vai trò độc tôn của mình trong việc giải thích và tiên liệu những hiện tượng nano. Thêm vào đó, việc triển khai nhiệt động học cổ điển đến các hệ thống vi mô bằng ngôn ngữ của công nghệ nano và công nghệ sinh học là một đề tài quan trọng trong vật lý lý thuyết, không những để giải thích cơ chế và hiệu suất vận hành của các động cơ nano nhân tạo mà còn dẫn dắt chúng ta thoát ra khỏi vòng vô minh để lý giải nguồn cội xuất hiện của sự sống dựa vào các động cơ phân tử sinh học. Về mặt công nghệ, sự kết hợp của chính sách quản lý khoa học sáng suốt có tầm nhìn xa của chính phủ tại một số nước tiên tiến và số vốn đầu tư kếch sù của các doanh thương đã đẩy mạnh những tiến bộ khoa học và nhanh chóng thương mãi hoá nhưng thành quả nghiên cứu tạo ra sản phẩm. Nền công nghệ nano chắc chắn sẽ có ảnh hưởng rất lớn đến xã hội và sinh hoạt của chúng ta trong vài thập niên tới.
19 December 2007
[1]Richard Feynman, "There's plenty of room at the bottom"[2]A. Credi, "Artificial molecular motors powered by light", Aust. J. Chem. 59 (2006) 157[3]M. Haw, "The industry of life", Physics World, November 2007, 25 [4]L. Lacerda, S. Raffa, M. Prato, A. Bianco and K. Kostarelos, "Cell-penetrating CNTs for delivery of therapeutics", Nano Today 2 (December 2007) 38

Tiềm năng của khoa học Công Nghệ Nano

Tiềm năng của khoa học Công Nghệ Nano

1. Tiềm năng thương mại và chế tạo

Hiện nay, trên thế giới các vật liệu và thiết bị nano bắt đầu được sản xuất với số lượng ngày càng nhiều và được đánh giá là sẽ có tiềm năng thương mại cao, mang lại những khoản lợi nhuận khổng lồ.
Theo dự báo của Quỹ Khoa học Quốc gia, Mỹ, giá trị thương mại hàng năm giai đoạn 2011-2015 của tất cả các sản phẩm liên quan tới Công nghệ Nano ( bao gồm cả công nghệ thông tin và truyền thông ) là khoảng 1000 tỷ USD. Các ôxit kim loại, như titan điôxit, kẽm ôxit, silic ôxit, nhôm ôxit, ziriconi và sắt ôxit, là các loại hạt nano thương mại quan trọng nhất. Các vật liệu này có sẵn ở dạng bột khô hoặc huyền phù lỏng. Số lượng vật liệu được sử dụng trong lĩnh vực thị trường chăm sóc da ( titan điôxit, v.v… ) trên thế giới là khoảng 1000 - 2000 tấn/năm, với vật liệu cấu phần nano trị giá khoảng 10 USD đến 100000 USD/tấn. Mặc dù thị trường thế giới về hạt nano được dự báo gia tăng trong vài năm tới, nhưng tốc độ sản xuất tất cả các hóa chất trên toàn cầu là khoảng 400 triệu tấn/năm (EC 2001) và như vậy các hóa chất dạng hạt nano chỉ chiếm một phần rất nhỏ trong tổng số hóa chất được sản xuất hiện nay ( khoảng 0,01% ). Bên cạnh đó, vật liệu vô cơ, kim loại hoặc bán dẫn cỡ nano thường có nhiều chức năng, nên được sử dụng trong nhiều lĩnh vực công nghiệp. Ví dụ, kẽm ôxit được sử dụng làm vật liệu quang điện tử ( làm màn hình hoặc pin quang voltaic và pin mặt trời tiên tiến ) ở dạng cố định trong thành phẩm, nhiều hơn so với làm thành phần sản phẩm chăm sóc da có hạt nano ở dạng tự do.

Bảng 1 : ước tính sản lượng các loại vật liệu và thiết bị nano khác nhau của thế giới trên cơ sở các tổng quan và Tạp chí Hóa học Quốc tế ( 2003 - 2004 ) và nghiên cứu thị trường ( BCC 2001 )


Sản lượng ước tính ( tấn/năm )

Carbon Nano tube ( ống nano cácbon ) cũng đang thu hút sự quan tâm của ngành công nghiệp do có các tính chất rất đáng chú ý. Công suất sản xuất ống nano cácbon hiện nay ước tính khoảng 100 tấn/năm. Hầu hết sản lượng ước tính là của các ống nano đa vách, còn ống nano đơn vách chiếm khoảng 9 tấn/năm.

Tiềm năng tạo ra lợi nhuận của các Carbon Nano tube cũng rất lớn. Theo một bản báo cáo mới đây của NanoMarket LC, một công ty tư vấn và nghiên cứu thị trường của Mỹ, thì các tính chất vật lý, nhiệt và điện đặc biệt của các ống nano cácbon sẽ tạo ra 3,6 tỷ USD trong kinh doanh cho các khu vực điện tử và bán dẫn tới năm 2009. Nghiên cứu của NanoMarket chỉ ra rằng các ống nano cácbon đang trở thành một sản phẩm chủ chốt mà các công ty điện tử rất quan tâm. Bản báo cáo cho biết khu vực chế tạo các thiết bị cảm biến, màn hình và bộ nhớ sẽ tạo ra lợi nhuận từ các linh kiện điện tử dựa trên ống nano. Mỗi một thị trường này sẽ có các sản phẩm dựa trên Carbon Nano tube trị giá hơn 200 triệu USD tới năm 2007.

Cũng theo một nghiên cứu của công ty này về 20 nước có Khoa học công nghệ Nano phát triển nhất trên thế giới thì thị trường bào chế dược phẩm sử dụng công nghệ Nano sẽ đạt 1,3 tỷ USD tới năm 2009. Nghiên cứu này chỉ ra, Công nghệ Nano sẽ mang lại những ích lợi hữu hình cho quá trình bào chế dược phẩm thông qua:

- Cải thiện sự hiểu biết về hóa chất ở cấp độ tế bào/phân tử,

- Cải thiện việc xác định và công nhận các dược phẩm và tế bào mục tiêu,

- Tăng thông lượng,

- Giảm thời gian bào chế những loại dược phẩm mới,

- Giảm lượng chất phản ứng quý giá cần thiết để tiến hành thử nghiệm dược phẩm tiềm năng,

- Cải thiện sự hình dung về các tương tác dược phẩm.

Bản báo cáo cũng dự đoán, tới năm 2009, 19% doanh thu bào chế dược phẩm sử dụng công nghệ Nano sẽ thu được từ điều khiển và phân tích tế bào, 13% từ sắp xếp ADN/ARN, các electropherroresis và định lượng hóa. Phân loại gen ( Genotyping ) sẽ chiếm 11% doanh thu và xét nghiệm thông lượng cao sẽ chiếm 10%. Những công ty lớn đang nghiên cứu những công nghệ chủ chốt như các hệ vi lỏng và phòng thí nghiệm trên con chíp sẽ thu được những khoản lợi nhuận khổng lồ vì những công ty này sẽ sáng tạo ra nhiều giải pháp, không chỉ trong bào chế dược phẩm mà còn cả trong việc cung cấp thuốc theo mục tiêu và ngăn ngừa bệnh tật.

1.2. Tiềm năng của khoa học - công nghệ nano trong công cuộc giảm đói nghèo toàn cầu

Viện Nanotech Foresight, một cơ quan chuyên về lĩnh vực công nghệ Nano được thành lập năm 1986 của Mỹ, đã xác định những nhiệm vụ tổng thể của công nghệ nano đối với thế giới trong giai đoạn hiện nay, gồm:

- Đáp ứng nhu cầu năng lượng toàn cầu bằng những giải pháp sạch,

- Cung cấp nước sạch cho toàn cầu,

- Tăng sức khoẻ và tuổi thọ cho con người,

- Tối đa hoá sản xuất nông nghiệp,

- Làm cho công nghệ thông tin có mặt ở mọi nơi,

- Tạo điều kiện để phát triển hiểu biết về vũ trụ.

Nhưng bên cạnh đó, khoa học và công nghệ Nano còn là một công cụ hữu hiệu để giải quyết một nhiệm vụ quan trọng, cấp bách nhất của thế giới. Đó là làm giảm nạn đói nghèo mà hơn 5 tỷ người sống ở những nước nghèo đang phải đối mặt. Các nhà khoa học cho rằng, hầu hết các làn sóng công nghệ đều làm tăng khoảng cách giữa các nước giàu với các nước nghèo, nhưng việc khai thác Công nghệ Nano lại là một cơ hội để thu hẹp khoảng cách này. ứng dụng Công nghệ Nano có tiềm năng rất lớn để cải tiến những tiêu chuẩn sống cơ bản của những người nghèo.

Bản Báo cáo về Phát triển Con người năm 2001 của Chương trình Phát triển Liên hiệp quốc (LHQ) đã minh hoạ rõ ràng vai trò làm giảm tỷ lệ tử vong và cải thiện đời sống con người của KH&CN trong giai đoạn 1960-1990, nhưng không nhấn mạnh đặc biệt tới vai trò của Công nghệ Nano. Trong một bản báo cáo mới được công bố vào đầu năm 2005, Lực lượng đặc nhiệm về Khoa học, Công nghệ và Đổi mới của Liên hiệp quốc ( một bộ phận được thành lập để hỗ trợ cho các cơ quan của Liên hiệp quốc nhằm thực hiện được các Mục tiêu Phát triển Thiên niên kỷ của Liên hiệp quốc ) đã nêu bật tiềm năng to lớn của Công nghệ Nano đối với sự phát triển bền vững.

Vậy cộng đồng khoa học quốc tế có thể làm gì để hỗ trợ cho việc ứng dụng công nghệ Nano ở các nước nghèo ? Năm 2002, Các Viện Y học Quốc gia (Mỹ) đã khái quát hoá một Lộ trình nghiên cứu y học để xác định những phương hướng trong nghiên cứu y-sinh và chỉ ra y học nano là một trong những lĩnh vực hứa hẹn giải quyết những vấn đề mà các nước nghèo đang phải đối mặt. Một số nhà khoa học từ Trung tâm Đạo đức Sinh học của trường Đại học Toronto và Chương trình Hệ gen và Y tế Toàn cầu Canađa, đã tiến hành một chương trình đánh giá tiềm năng sử dụng các ứng dụng của Công nghệ Nano để thực hiện 8 Mục tiêu Phát triển Thiên niên kỷ của Liên hiệp quốc bằng các phương pháp khoa học và đã rút ra được kết luận thể hiện ở bảng 5. Trong đó, 8 mục tiêu Phát triển Thiên niên kỷ là:

I - Xoá đói và giảm nghèo;

II - Phổ cập giáo dục;

III- Đẩy mạnh bình đẳng giới và trao quyền cho phụ nữ;

IV - Giảm tỉ lệ tử vong ở trẻ em;

V - Tăng cường sức khoẻ cho bà mẹ;

VI - Chống lại HIV/AIDS, sốt rét và các bệnh khác;

VII - Đảm bảo môi trường bền vững;

VIII - Xây dựng quan hệ đối tác toàn cầu để phát triển.

Bảng 2: Các ứng dụng công nghệ Nano phục vụ Tám Mục tiêu Phát triển Thiên niên kỷ






Những kết luận của công trình nghiên cứu này là một định hướng rất bổ ích đối với những nước nghèo để hoạch định phát triển Công nghệ Nano theo những hướng thiết thực nhất phù hợp với hiện trạng của đất nước. Hiện nay, trên thế giới chỉ mới có các chất có cấu trúc nano được sử dụng để xây dựng nên thế hệ tiếp theo của tế bào năng lượng mặt trời và tế bào nhiên liệu hyđrô. Các nhà khoa học đang nghiên cứu sử dụng Công nghệ Nano để phát triển phương pháp dự trữ hyđrô. Hệ thống dự trữ hyđrô phù hợp có nghĩa là sẽ có năng lượng thay thế sạch hơn cho những nước vẫn phụ thuộc vào nhiên liệu hoá thạch. Mặt khác, các nhà khoa học cũng phát triển ứng dụng Công nghệ Nano để cải thiện độ phì nhiêu của đất và sản lượng cây trồng, các bộ cảm biến nano có thể giám sát tình hình cây trồng vật nuôi và các chất từ nano có thể loại bỏ những chất gây ô nhiễm cho đất. Cũng nhờ vào Công nghệ Nano, các nhân viên y tế có thể xét nghiệm máu bằng một mẩu nhựa nhỏ bằng đồng xu. Tương tự, nếu sử dụng tiến bộ của Công nghệ Nano có thể thực hiện chẩn đoán bệnh chỉ trong vài phút và rút ngắn thời gian cũng như chi phí xét nghiệm các bệnh truyền nhiễm như sốt rét và HIV/AIDS. Công nghệ Nano cũng có vai trò rất lớn trong việc xử lý nước. Hiện nay, 1/6 dân số toàn cầu không có nước sạch, hơn 1/3 người dân ở những vùng nông thôn châu Phi, châu Á và châu Mỹ La tinh không có nước sạch và hàng năm có hai triệu trẻ em chết vì bị những bệnh phát sinh do nước bẩn. Trong khi đó, màng và ống nano là những hệ thống rất rẻ, dễ di chuyển và có thể lọc, giải độc và khử muối trong nước hiệu quả hơn phương pháp lọc bằng vi khuẩn và vi rút thông thường. Chính vì vậy, các nhà nghiên cứu đang tìm cách phát triển phương pháp sản xuất hàng loạt các ống lọc bằng nano cácbon nhằm nâng cao chất lượng nước. Như vậy, với khả năng tạo ra những ứng dụng thiết thực nhất đối với đời sống của con người, Công nghệ Nano sẽ có vai trò rất lớn để cải thiện cuộc sống của người dân, giải quyết những vấn đề nan giải nhất mà nhân loại đang phải đối mặt.

nguồn: http://www.thegioinano.com/portal/index.php?option=com_content&view=article&id=154:tim-nng-ca-khoa-hc-cong-ngh-nano&catid=34:cong-nghe-nano

Khi ly tách tự rửa

Khi ly tách tự rửa

Các chuyên gia công nghệ Nano của Đức phát minh ra một chất phủ bề mặt, có giá trị tương đương cho đời sống hàng ngày như chất teflon dùng cho nồi niêu xoong chảo , phát minh vào năm 1954. Chất liệu mới này, không trầy, chịu nhiệt cao, an toàn sinh học , không độc hại , ứng dụng đa dạng và không chỉ dùng cho các thiết bị nhà bếp hoặc quần áo vải vóc

Lớp chất liệu này rất mỏng, đa ứng dụng và có khả năng trao đổi khí tốt. Chất liệu cơ bản chính là Silicium (Si). Đây là loại nguyên liệu dùng làm thủy tinh và có khỏang 15% trong lòng đất.

Trong nhiệt độ bình thường (nhiệt độ phòng) loại thủy tinh mới này ở dạng lỏng. Đây là là một phát minh từ phòng thí nghiệm công nghệ nano của Đức. Tại Saarland, một công ty đã phát minh ra phương pháp lấy thành phần siliziumdioxid ra từ cát thủy tinh và đem hòa trộn với nước hoặc cồn. Hỗn hợp khóang chất này không gì khác hơn là loại thủy tinh lỏng và siliziumdioxid là thành phần chính của thủy tinh.

Loại thủy tinh mới này bám lên hầu như tất cả các loại vật thể từ các loại chất liệu khác nhau, từ khuôn nướng bánh đến ly rượu, gỗ , áo khoác mùa đông hoặc hoa hồng trong vườn. Phương pháp ứng dụng cơ bản thật đơn giản. Thoa chất phủ lên, dung môi sẽ bốc hơi ! Còn lại là một lớp thủy tinh thật mỏng, kết hợp chặt chẽ với bề mặt. Hỗn hợp Silizium này có thể dùng cọ, dùng khăn hoặc xịt lên bề mặt.

Mỏng hơn sợi tóc đến 500 lần !

Sau khi khô, lớp Nano có độ dầy khoảng 100 nano meter. Lớp này mỏng hơn sợi tóc con người đến 500 lần. Sau khi khô, các phân tử Silizium sẽ tạo thành một màng kết nối thật chắc với bề mặt và không thể tách ra một cách đơn giản

Dù mỏng như một màng nhựa nhưng lớp thủy tinh này bền đến mức có thể bảo vệ cả một công trình xây dựng to lớn. Các nhà chuyên gia về công nghệ Nano từ Saarland đã dùng công nghệ thủy tinh lỏng Nano này để bảo quản lăng tẩm của nhà lập quốc Thổ Nhĩ Kỳ tên Atatuerk. Hiện tại chính phủ Thổ Nhĩ Kỳ đang tiến hành bảo quản các tượng đài, các công trình xây dựng cổ có giá trị văn hóa bằng công nghệ thủy tinh Nano.

Một chuỗi bán thực phẩm fast food của Mỹ đã ứng dụng công nghệ này vào chi nhánh lớn của họ tại Salzburg (Đức) và họ đã ứng dụng thủy tinh Nano lên gạch men tường, nền nhà , cửa sổ, bàn ăn. Đặc biệt là lên tất cả các sản phẩm inox trong nhà bếp vì việc này có liên quan đến vệ sinh. Lớp thủy tinh ngăn chặn nấm và vi khuẩn bám trên bề mặt. Cốt lõi là chức năng kháng khuẩn của lớp thủy tinh Nano trong nhà bếp, trong bệnh viện, nhà vệ sinh qua sự chống bám bẩm (dễ rửa ). Khả năng chống bám bẩm của thủy tinh Nano khiến không có gì có thể đọng lại trên bề mặt. Tác dụng này không khác gì trong quảng cáo cho chất rửa đa năng: Chỉ cần dùng khăn ẩm lau qua là bề mặt sẽ sạch bóng !

Phát minh của Đức đã được tin tưởng và ứng dụng mạnh tại England, tuy nhiên từ đó cũng có những khúc mắc như: các công ty sản xuất chất tẩy rửa đang lo ngại về việc họ sẽ không bán được hàng ! Bên cạnh đó còn có các công ty vệ sinh. Khi việc lau chùi trở nên quá dễ dàng, khi thuê công ty làm vệ sinh lau chùi , thì họ cũng sẽ tính giờ làm việc ít lại.

Dù phát minh tại Đức, nhưng sản phẩm chưa bán đại trà. Hiện nay có một số công ty bán vật liệu xây dựng đang phân phối. Ứng dụng chính yếu tại Đức hiện nay là trong các công ty sản xuất sữa, phô mai, các nơi sản xuất và chế biến thịt. Nói chung là tại các nơi có nhu cầu vệ sinh rất cao !

Ứng dụng trong lãnh vực tư nhân , như trong nhà bếp, trong phòng tắm hiện còn bỏ ngỏ.

Dù lớp thủy tinh Nano rất mỏng , nhưng chúng hoàn toàn không bị phá hủy qua quá trình vệ sinh, lau chùi. Nước, chất tẩy rửa, nhiệt độ cao , hay thấp hoàn toàn không ảnh hưởng đến lớp thủy tinh Nano. Tùy theo ứng dụng, lớp thủy tinh Nano có thể bền đến nhiều năm, với điều kiện không dùng các chất tẩy rửa có các hạt mài mòn , hoặc không dùng giấy nhám đánh lên trên bề mặt.

Trong lãnh vực an toàn thực phẩm , thủy tinh lỏng Nano hoàn toàn không độc hại đối với cơ thể. Các nghiên cứu xác minh Silizium là một chất liệu tự nhiên và trong cơ thể mỗi con người có khỏang 1000 milligramm. Dựa trên kiến thức này, Thủy tinh Nano đang có triển vọng ứng dụng rộng trong nông nghiệp , trong xây dựng. Theo một thí nghiệm khác, thủy tinh Nano có thể dùng làm chất kháng côn trùng, không độc hại, không hậu quả: họ lấy 2 thang gỗ , dùng thủy tinh Nano phủ lên một thanh gỗ, một thanh không phủ Nano . Sau đó cho cả hai thanh gỗ vào tổ mối, sau 9 tháng lấy ra, thanh gỗ có phủ thủy tinh Nano vẫn còn nguyên vẹn, không bị mối phá hủy. Thanh không phủ thủy tinh Nano bị mối ăn hết khỏang 60% thể tích . Bên cạnh đó thanh gỗ có thủy tinh nano không bị bám rêu, sạch, không hư mục từ trong , điều chứng minh thanh gỗ không bị bịt kín và vẫn “thở “ được,

Hạt giống, được phủ bằng một lớp thủy tinh Nano, có khả năng kháng được sự tấn công của nấm. Các nhà khoa học quan sát thấy hạt giống được phủ thủy tinh Nano không chỉ khỏe mà còn nảy mầm lẹ hơn. Họ phỏng đoán dưới lớp thủy tinh Nano , hạt giống không cần phải tốn sức cho việc tự vệ chống lại vi khuẩn và nấm, nên đã dồn hết sức lực cho việc phát triển …. và rồi thủy tinh Nano có khác gì hơn một nhà kiếng chúng ta đang trồng cây đâu ? Thủy tinh cuối cùng cũng chỉ là thủy tinh …

Theo morgenpost.de / Von Jörg Zittlaualt

Nano Liquid Glass being applied to a statue at Ataturk's Mausoleum in Turkey

ADN - “chìa khoá” tạo ra các vật liệu công nghệ nano tương lai

Chad Mirkin, Nhà khoa học vật liệu tại trường Đại học Northwestern, Evanston, Mỹ và là người đứng đầu một trong hai nhóm nghiên cứu cho biết: “Là các nhà khoa học về nano, hiện chúng tôi đã gần đạt được mơ ước tìm ra cách để phá vỡ mọi thứ thành các khối cơ bản và lắp ráp chúng thành cấu trúc mà chúng tôi muốn”.

Mặc dù trước đây ADN đã được sử dụng để xây dựng các cấu trúc nano phẳng, nhưng đây là lần đầu tiên nó được dùng để tạo ra cấu trúc 3D. Kỹ thuật này đã được thông báo trên Tạp chí Nature của Anh.

Tự lắp ráp

Các nhà nghiên cứu từ lâu đã quan tâm tới việc tạo ra các vật liệu chứa các mạng hạt nano 3D. Theo Phó Giáo sư John Crocker tại trường Đại học Pennsylvania, Mỹ, ý tưởng đưa ra là các “siêu vật liệu” (Metamaterials) này sẽ có các thuộc tính quang học và điện tử độc đáo, tạo khả năng tạo ra các thiết bị la-de và pin mặt trời hiệu suất cao, cũng như các kính hiển vi có độ phân giải cao và thậm chí các lớp phủ có thể làm cho các đồ vật vô hình.


Việc cố làm cho các khối na nô đơn giản tự sắp xếp thành các cấu trúc yêu cầu đã được giải quyết, nhưng định vị chính xác các khối cơ bản khác nhau trong cấu trúc 3D đã chứng tỏ.là một nhiệm vụ không thể coi thường.

Mikin và cộng sự đã sử dụng các quy tắc đơn giản nhưng rất đặc thù của sự kết đôi cơ bản trong ADN để tạo ra hai cấu trúc rất khác nhau từ các hạt vàng 15 nanomet. Các sợi ADN nhân tạo được gắn vào các hạt vàng nhỏ, và các chuỗi ADN khác nhau đã được sử dụng để tạo nên các cấu trúc tinh thể khác nhau.

Mirkin cho biết: “ADN gắn trên bề mặt các hạt nanô chỉ đạo việc bố trí của mỗi hạt nano trong một mạng lớn hơn. Các tinh thể cuối cùng đã được tạo ra từ gần một triệu hạt nanô”.

Sử dụng các phương pháp tinh vi khác, một nhóm khác đứng đầu là Nhà Vật lý Oleg Gang, ở Phòng Thí nghiệm Quốc Gia Brookhaven tại Tp. New York, cũng có báo cáo về việc sử dụng ADN để lắp ráp tinh thể từ các hạt nanô vàng.

Gang và các cộng sự đã tạo ra các tinh thể của họ bằng cách gắn các sợi đơn ADN với các hạt vàng (trong khi Nhóm của Mirkin sử dụng các sợi ADN kép, trong đó có một sợi dài hơn sợi còn lại). Sau đó, sợi ADN “treo lơ lửng” này tìm thấy sợi bổ sung ở hạt khác, tạo thành một liên kết chặt chẽ dựa trên các nguyên tắc ghép đôi cơ bản của ADN truyền thống.

Các nhà nghiên cứu Brookhaven đã tạo ra các tinh thể với cấu trúc mở có thể điều chỉnh được bằng nhiệt độ. Họ nói: “Các hạt nanô được tạo thành một cách thuận nghịch trong các chu kỳ nung nóng và làm lạnh”.

Crocker bình luận như sau về công nghệ mới này trên Tạp chí Nature: “Nếu một kỹ sư siêu vật liệu tương lai yêu cầu một mạng hạt nanô, với cấu trúc và giãn cách, kích cỡ, hợp phần đặc thù, thì phương pháp ADN này khả dĩ hơn để tạo ra nó, so với phương pháp trước đây”.

Theo lời của Gang, thì các nhà khoa học hiện nay đã có thể thay tạo hóa để tạo ra “các nguyên tử nhân tạo” và những vật liệu từ chúng.

Lọc nước sạch nhờ công nghệ nano

Lọc nước sạch nhờ công nghệ nano

Các hạt nhỏ bé bằng silic tinh khiết được phủ một lớp vật liệu hoạt tính có thể được sử dụng để để loại bỏ các hóa chất độc hại, vi khuẩn, virut và các chất độc hại khác trong nước một cách hiệu quả và ít tốn kém hơn so với các phương pháp lọc nước truyền thống.

Peter Majewski và Chiu Ping Chan, Viện Nghiên cứu Ian Wark thuộc trường Đại học Nam Ôxtrâylia cho rằng khả năng dùng được các nguồn nước sạch có chất lượng đang nhanh chóng trở thành một vấn đề kinh tế xã hội trên toàn cầu, nhất là ở các nước đang phát triển. Tuy nhiên, công nghệ lọc nước thường phức tạp, đòi hỏi thiết bị tinh vi và tốn kém trong vận hành và bảo dưỡng. Hơn nữa, công nghệ này thường đòi hỏi giai đoạn khử trùng tốn kém. Nhóm nghiên cứu của Ôxtrâylia đề xuất công nghệ nanô làm giải pháp đơn giản để giải quyết vấn đề này.

Các nhà nghiên cứu đã khảo sát các hạt silic được phủ một lớp nanô vật liệu hoạt tính từ hyđrôcácbon có các mấu neo bằng silic. Lớp phủ này được tạo thành qua một quá trình hóa học tự kết hợp, do vậy không cần các thành phần khác mà chỉ cần kích thích các thành phần để tạo ra các hạt hoạt tính.

Các hạt hoạt tính này còn được gọi là silic gia công bề mặt (SES), sau đó được thử nghiệm nhằm minh họa khả năng có thể loại bỏ các phân tử sinh học, các mầm bệnh dạng virut như virút Polio, các vi khuẩn như Escherichia coli và Cryptosporidium parvum là các mầm bệnh lây qua đường nước.

Các kết quả thu được cho thấy rõ ràng các loại chất hữu cơ được loại bỏ một cách hiệu quả ở khoảng giá trị pH của nước sạch thông qua quá trình kích thích các hạt được phủ vật liệu hoạt tính trong nước bị ô nhiễm trong thời gian 1 giờ và lọc qua lớp bột. Quy trình lọc diễn ra bởi lực hút tĩnh điện giữa mầm bệnh và bề mặt của các hạt gia công công nghệ.

Theo Báo cáo "Nước cho mọi người-Nước cho sự sống" của Chương trình đánh giá Nước Thế giới của UNESCO, mỗi ngày có hơn 6000 người chết do các bệnh liên quan đến nước, gồm tiêu chảy, nhiễm giun và các bệnh lây nhiễm khác. Ngoài ra, các chất ô nhiễm hữu cơ từ chất thải công nghiệp từ các nhà máy giấy, dệt, da, xưởng đúc, lọc, hóa dầu là nguyên nhân chính gây bệnh tật ở các vùng trên thế giới, nơi không có đủ các quy định cần thiết để bảo vệ con nguời trước các dòng thải công nghiệp. Nguyên lý nanô dùng trong lọc nước có thể giúp ngăn ngừa bệnh tật và nhiễm độc cho hàng triệu người trên khắp thế giới

Các hướng chế tạo vật liệu nano

Các hướng chế tạo vật liệu nano


Vật liệu nano lai cơ kim không chỉ đại diện cho sự thay thế đầy sáng tạo trong thiết kế vật liệu và các hợp chất mới trong nghiên cứu hàn lâm mà còn cho phép triển khai một cuộc cách mạng ứng dụng công nghiệp. Ngày nay, hầu hết các vật liệu lai đang có mặt trong thị trường là được tổng hợp và xử lý dựa trên kỹ thuật của hóa học trong thập niên 80 của thế kỷ 20. Các quá trình bao gồm :

a) Đồng trùng hợp các silan hữu cơ, đại phân tử monomer, alkoxide kim loại

b) Áo bọc các chất hữu cơ bằng các silica hoặc alkoxie kim loại có xuất xứ từ quá trình sol-gel

c) Chức hoá hữu cơ lên độn nano, nano clay, hoặc các hợp chất có cấu trúc tấm

Những thế hệ mới các vật liệu nano này phát triển liên tục thông qua các nghiên cứu hàn lâm đã và đang là những quả ngọt cho các ứng dụng đầy lợi nhuận trong các lĩnh vực quang học, điện tử, truyền dẫn ion thể rắn, cơ khí, năng lượng, môi trường, sinh học, y học. Các ứng dụng cụ thể có thể thấy như màng lọc, thiết bị tách, màng phủ thông minh, pin nhiên liệu, tế bào mặt trời, chất xúc tác, cảm biến,v.v…

Các chiến lược chung trong chế tạo các vật liệu nano mang chức

Có ba hướng chính A, B, C độc lập trong chủng loại, ứng dụng , bản chất giao diện giữa các phần hữu cơ-vô cơ, cơ chế tổng hợp hóa học được dùng trong chế tạo vật liệu nano. (hình 1)

Hướng A liên quan đến hóa học sol-gel, sử dụng các tác chất đa chức và tạo cầu nối, tổng hợp sử dụng các điều kiện thủy nhiệt.

* A1: Tổng hợp sol-gel.


Thông qua các cơ chế tổng hợp sol-gel kinh điển, chúng ta có mạng vật liệu lai vô định hình. mạng này hình thành từ quá trình thủy phân các alkoxide kim loại đã được biến tính phần hữu cơ hoặc các alide kim loại, và alide kim loại đã được ngưng tụ với alkoxide kim loại. Dung môi có thể chứa các phân tử hữu cơ, phân tử sinh học hoặc polymer đa chức mà nó có thể tạo nới ngang hoặc tương tác với hoặc bị giữ lại bên trong phần vô cơ của vật liệu nano lai nhờ các tương tác ( liên kết hydro, tương tác p-p, lực Val der Waals).

Hướng này đơn giản, rẻ, và tạo ra vật liệu nano lai vô định hình. Các vật liệu này cho cấu trúc micro không xác định, trong suốt và dễ định hình dạng màng hay khối. Chúng có kích thước đa phân tán và không đồng nhất trong thành phần hóa học. Tuy nhiên vật liệu tổng hợp từ hướng này rẻ, đa dụng, có nhiều tính chất cơ lý đáng quan tâm và đang có ứng dụng thương mại trong dạng màng hay khối monolith. Hiện tại, việc kiểm soát cấu trúc cục bộ hoặc bán cục bộ cũng như mức độ tổ chức của vật liệu loại này là các vấn đề quan trọng trong việc tạo ra những tích chất như ý.

* A2: Sử dụng tác chất đã tạo cầu nối.


Các chất đã tạo cầu nối như silsesquioxane X3Si–R9–SiX3 với R9 là chất bắt cầu gốc hữu cơ , X là các gốc Cl, Br , OR. Sử dụng những chất này cho phép chế tạo các vật liệu lai cơ kim với độ đồng nhất mức phân tử và có tổ chức cục bộ tốt hơn. Sự kết hợp các thành phần cầu nối gốc hữu cơ của các nhóm alkyl, vòng thơm, và ure giúp quá trình tự kết nối tốt hơn nhờ khả năng tạo mạng liên kết hydro mạnh và sắp xếp hiểu quả qua các tương tác p-p của các nửa phân đoạn hữu cơ.

* A3: Tổng hợp thủy nhiệt


Phương pháp tổng hợp thủy nhiệt trong dung môi phân cực (nước , formamide,v.v…) với sự có mặt các phân tử khuôn gốc hữu cơ cho ra các sản phẩm zeolite. Các sản phẩm này có diện tích bề mặt rất cao. Một số vật liệu zeolite lai mang tính từ hoặc điện. Sản phẩm có cấu trúc khung cơ-kim (metal organic framwork- MOF) đi từ phương pháp này hiện đang là ứng cử viên cho các ứng dụng xúc tác và hấp phụ khí.


Hướng B liên quan đến hóa học kết nối (hướng B1) , hoặc sự phân tán (hướng B2) các khối nano đã được hình thành sẵn (well-defined nanobuilding block- NBB). Các khối nano hình thành sẵn là các phần tử được hiệu chỉnh cấu trúc và sẵn sàng tích hợp vào vật liệu nền. Những NBB có thể là các chùm hay bó phân tử, hạt nano được gắn trước hay cố định các nhóm chức hữu cơ ( oxyt kim loại, kim loại,oxyt các nguyên tố nhóm VI, các hợp chất dạng nano vỏ-lõi hoặc nano lớp (đất sét, các hydroxyt lưỡng lớp, các phospate dạng lớp, oxide các nguyên tố nhóm VI). Những NBB này có khả năng chèn tách vào các thành phần hữu cơ. Bên cạnh đó, chúng có thể được bọc các ligand hoặc kết nối với các chất bắt cầu gốc hữu cơ, chẳng hạn các phân tử telechelic hoặc polymer hoặc dendrimer đã chức hóa. Sử dụng những nhóm chất đã định sẵn cấu trúc này cho ưu điểm:

- Chúng khá trơ với sự thủy phân hoặc sự tấn công của các phần tử ái nhân.

- Các NBB có kích thước nano, đa phân tán, và với cấu trúc định sẵn rõ sẽ tạo dựng tốt các tính chất của vật liệu cuối cùng.

Sự đa dạng các NBB về bản chất, cấu trúc, và độ chức và các liên kết cho phép tạo nên các kiến trúc giao diện cơ-kim khác nhau tương ứng đến các kiểu tổ hợp khác nhau. Ngoài ra, tổng hợp theo từng bậc cho phép kiểm soát tốt các cấu trúc trung gian trong quá trình. Nhóm vật liệu đi từ sử dụng NBB quan trọng là vật liệu dùng đất sét nano. Chúng đã được thương mại hóa từ những kết quả chèn tách, trương nở và ly tán các đất sét nano.

Hướng C Tự tổ hợp -lắp ghép.

* C1: Tố chức , tạo dạng mạng lai cơ-kim bằng các chất hoạt động bề mặt hữu cơ

Trong mười năm qua, hướng tổng hợp mới này được khảo sát và nghiên cứu kỹ và đem lại sự thành công trong phát triển vật liệu lai. Sự thành công này liên quan đến khả năng kiểm soát và tinh chỉnh các giao diện cơ-kim. Trong lĩnh vực này, các pha cơ-kim được quan tâm tới vì sự đa dụng của chúng trong việc xây dựng nên một phạm vi rộng các loại nanocomposite. Nanocomposite từ lĩnh vực này có thể là loại phân tán trật tự cao các khối vô cơ vào nền hữu cơ hay là loại vật liệu nanocomposite có sự dung nạp có kiểm soát cao ở mức nano độ các polymer hũu cơ vào trong nền vô cơ. Một trong số chúng là vật liệu đi từ tổng hợp mạng lai có cấu trúc meso.

* Hướng C2:


Sử dụng tác chất silsesquioxane đã được tạo cầu nối để tạo vật liệu lai xốp meso có khung ghép. Bước tiếp cận này tạo ra họ vật liệu mới các silica lai có tổ chức meso xốp mang nhóm chức hữu cơ bên trong vỏ silica. Vật liệu nano xốp này có trật tự cao và độ xốp meso cho phép thực hiện các phản ứng gắn chức hữu cơ lên bề mặt tiếp theo.

* Hướng C3:


Liên quan đến sự kết hợp quá trình tự tổ hợp-gắn kết và cách xây dựng các khối nano NBB. Hướng này cho phép chúng ta có thể kiểm soát tốt các bước tổ hợp -gắn kết. Chúng hết sức quan trọng trong việc khảo sát nền tảng tổng hợp vật liệu bằng sự xây dựng kết cấu. Hướng này cho thấy sự đa dạng các giao diện trong cấu trúc giữa các phần vô cơ và hữu cơ ( nối đồng hóa trị, phức, tương tác tĩnh điện, v.v…). Các khối NBB cũng tạo ra ngành hóa học chuyên về lắp ghép phân tử thông qua các qua trình nhận dạng mức phân tử

Nano vàng và ứng dụng thực tiễn

Nano vàng và ứng dụng thực tiễn


Vàng (Au) là nguyên tố kim loại đứng ở vị trí thứ 79 trong bảng tuần hoàn hoá học, có giá trị vô cùng to lớn trong cuộc sống của con người từ xưa tới nay, được coi là “Vua của các kim loại”. Ngày nay, khi khoa học công nghệ phát triển thì vàng có thêm ứng dụng mới trong thực tiễn đó là: Nano vàng.

Các phân tử Nano vàng hiện được coi là thiên đường nghiên cứu mới cho các nhà khoa học. Điều đó được thể hiện rất rõ qua việc hơn 130 nhà khoa học vừa mới đến Paris để tham gia vào nhóm công tác ngiên cứu có tên là Au–Nano (Nano–Vàng). Đây là một tập hợp bao gồm 40 nhóm nghiên cứu thuộc các lĩnh vực khác nhau: sinh học, hoá học, vật lý và thậm chí có cả đại diện của giới công nghiệp.

Mối quan tâm của các nhà khoa học về nguyên tố không biến đổi và không bị ôxy hoá này đã xuất hiện từ rất lâu: ngành y học cổ truyền Ai Cập, Trung Hoa hay Ấn Độ đã sử dụng kim loại này để xử lý vết loét trên da hay một số bệnh viêm nhiễm khác. Nhưng ngày nay, nhờ vào tiến bộ trong lĩnh vực khoa học Nano (Nanoscience), người ta có thể xác định thêm nhiều đặc tính thú vị khác của kim loại này.

Theo Olivier Pluchery, nhà vật lý học tại viện khoa học Nano (Paris), khi được chia nhỏ ở trạng thái phân tử có kích thước vài Nanomet, nguyên tố này có rất nhiều đặc tính riêng biệt. Trước tiên chúng sẽ thay đổi màu sắc, chuyển từ màu vàng sang màu đỏ hoặc tím nhạt. Sự chuyển màu này có được là do trong phân tử Nano vàng không hấp thụ ánh sáng có bước sóng nằm trong vùng quang phổ như các miếng vàng khối thông thường.


Gold nanoparticle functionalized with sequence-specific oligonucleotides.

Nhưng phân tử Nano vàng không chỉ có ưu điểm về mặt thẩm mỹ. Trong lĩnh vực hoá học, vàng có rất nhiều ứng dụng đặc biệt. Trong phản ứng hoá học, vàng có thể thay thế nhiều chất xúc tác quý hiếm như: Platin, Paradium, Rhodium…

Hoàn toàn bất động ở trạng thái bình thường, vàng là kim loại rất được các nhà kim hoàn ưa chuộng bởi vì đặc tính không bị ôxi hoá hay bị mờ. Nhưng ở trạng thái phân tử Nano, đặc tính này lại thay đổi 180 độ. Từ cuối những năm của thập niên 80 thế kỉ XX, một nhóm các nhà khoa học Nhật Bản đã chứng minh rằng phân tử vàng ở khích thước nhỏ hơn 5 Nanomet có thể tham gia phản ứng oxy hoá với Cacbon oxit (CO) để tạo thành Cacbon dioxít (CO2). Ngoài ra vàng có thể tham gia phản ứng ở nhiệt độ thấp (đến –700C) trong khi đó một số chất xúc tác như Platin chỉ phản ứng ở nhiệt độ trên 1000C. Tuy nhiên Cacbon oxít CO là một loại khí độc trong khi đó CO2 chỉ có một nhược điểm duy nhất đó là...góp phần làm tăng hiệu ứng nhà kính.

Vì vậy, trên thực tế các nhà sản xuất ôtô có thể chế tạo các ống khí thải bằng các phân tử vàng để tránh việc thải khí CO và có thể oxy hoá lượng tử nhiên liệu chưa cháy hết. Để tạo ra Hydro, họ cũng có thể phát triển các loại pin nhiên liệu dành cho phương tiện giao thông bằng điện thông qua một quá trình tái tạo Methanol không tạo khí CO.

Lĩnh vực khác không kém phần ý nghĩa là sinh học và y học. Các phân tử Nano vàng có đặc tính tự phát nhiệt dưới tác dụng của bức xạ laser. Đặc tính này có thể được sử dụng luân phiên hay bổ sung cho liệu pháp tia X trong chữa trị một số bệnh ung thư. Các nhà khoa học tại viện nghiên cứu Max-Planck nghiên cứu sự phá huỷ của các mô khoẻ mạnh bằng cách sử dụng những viên thuốc trị ung thư bên trong khối u. Để đưa những chất này vào đúng vị trí, các nhà khoa học đã tạo ra những viên nhộng rất nhỏ với kích thước vài Nanomet. Vỏ ngoài viên nhộng được cấu tạo bởi nhiều lớp polyme rất mỏng đặt lên nhau, cho phép chúng vượt qua dễ dàng lớp màng bên ngoài màng tế bào. Trên bề mặt viên nhộng là những phân tử Nano được sử dụng từ những nguyên tử vàng và bạc. Khi đã hấp thụ vào những tế bào trong khối u, viên nhộng sẽ di chuyển bằng tia hồng ngoại. Sức nóng này sẽ đẩy những phân tử vàng và bạc di chuyển khiến viên nhộng vỡ ra và phá vỡ kết cấu những tế bào ác tính. Hiện các nghiên cứu trên chuột đã chứng minh được tính hiệu quả của công nghệ này.


Detection of glycoprotein based on FRET between concanavalin A-conjugated gold nanoparticle (ConA-AuNPs) and dextran-conjugated quantum dots (Dex-QDs).


Ở trạng thái phân tử Nano, vàng cũng có khả năng cố định các nguyên tử sinh học (kháng nguyên và kháng thể). Vì vậy, các phân tử vàng có thể sử dụng trong rất nhiều xét nghiệm sinh học hay chuẩn đoán y khoa.

Tất cả những ứng dụng trên đây còn cần rất nhiều năm nghiên cứu, kiểm chứng lại, đặc biệt để phát triển những lý thuyết về Nano vàng. Người ta đã biết cách chế tạo các phân tử này nhờ vào sự bốc hơi của vàng trong dung dịch vàng ở môi trường chân không. Ngoài ra cũng có thể tách thành phân tử Nano vàng bằng siêu thanh, chiếu xạ hay thông qua phản ứng hoá học, rất phù hợp với sản xuất trong công nghiệp.

Quả bóng đá C60

Năm 1985, một nhóm nghiên cứu bao gồm Harold Kroto (University of Sussex, Anh Quốc) và Sean O'Brien, Robert Curl, Richard Smalley (Rice University, Texas, Mỹ) khám phá ra một phân tử chứa 60 nguyên tử carbon, viết tắt là C60. Giáo sư Kroto là một nhà nghiên cứu hóa học thiên văn. Vào thập niên 70, ông đã có một chương trình nghiên cứu những chuỗi dài các nguyên tử carbon trong các đám mây bụi giữa các vì sao (interstellar dust). Ông liên lạc với nhóm của Curl và Smalley và dùng quang phổ kế laser của nhóm nầy để mô phỏng điều kiện hình thành của các chuỗi carbon trong các đám mây vũ trụ. Họ không những có thể tái tạo những chuỗi carbon mà còn tình cờ khám phá một phân tử rất bền chứa chính xác 60 nguyên tử carbon. Sự khám phá C60 xoay hướng nghiên cứu của nhóm nầy từ chuyện tìm kiếm những thành phần của vật chất tối (dark matter) trong vũ trụ đến một lĩnh vực hoàn toàn mới lạ liên hệ đến khoa vật liệu (Materials Science). Năm 1996, Kroto, Curl và Smalley được giải Nobel Hóa học cho sự khám phá nầy.

Tám loại carbon theo thứ tự từ trái sang phải: (a) Kim cương, (b) Than chì, (c) Lonsdaleite, (d) C60, (e) C540, (f) C70, (g) Carbon vô định hình (h) Ống nano carbon (Nguồn: Wikipedia)

Trước C60 người ta chỉ biết carbon qua ba dạng: dạng vô định hình (amorphous) như than đá, than củi, bồ hóng (lọ nồi), dạng than chì (graphite) dùng cho lõi bút chì và dạng kim cương. Sự khác nhau về hình dạng, màu mè, giá cả và cường độ yêu chuộng của nữ giới giữa than đá, than chì và kim cương thì quả là một trời một vực. Tuy nhiên, sự khác nhau trong cấu trúc hóa học lại khá đơn giản. Như cái tên đã định nghĩa, dạng vô định hình không có một cấu trúc nhất định. Trong than chì các nguyên tố carbon nằm trên một mặt phẳng thành những lục giác giống như một tổ ong. Cấu trúc nầy hình thành những mặt phẳng nằm chồng chất lên nhau mang những electron pi di động tự do. Than chì dẫn điện nhờ những electron di động nầy. Trong kim cương những electron pi kết hợp trở thành những nối hóa học liên kết những mặt phẳng carbon và làm cho chất nầy có một độ cứng khác thường và không dẫn điện.
Sự khám phá của C60 cho carbon một dạng thứ tư. Sau khi nhận diện C60 từ quang phổ hấp thụ Kroto, Curl và Smalley bắt đầu tạo mô hình cho cấu trúc của C60. Trong quá trình nầy các ông nhanh chóng nhận ra rằng các nguyên tố carbon không thể sắp phẳng theo kiểu lục giác tổ ong của than chì, nhưng có thể sắp xếp thành một quả cầu tròn trong đó hình lục giác xen kẻ với hình ngũ giác giống như trái bóng đá. Phân tử mới nầy được đặt tên là buckminster fullerene theo tên lót và họ của kiến trúc sư Richard Buckminster Fuller. Ông Fuller là người sáng tạo ra cấu trúc mái vòm hình cầu với mô dạng lục giác. Cho vắn tắt người ta thường gọi C60 là fullerene hay là bucky ball.

Quả bóng đá phân tử C60 với đường kính vào khoảng 1 nm

Trong việc quyết định trao giải Nobel, Viện Hàn Lâm Khoa Học Thụy Điển đã quên mất công lao của giáo sư Eiji Osawa. Ông là người đầu tiên đã tiên đoán sự hiện hữu của C60. Tôi tình cờ gặp ông tại một cuộc hội thảo khoa học chuyên ngành. Cũng như phần lớn các giáo sư người Nhật Bản khác, giáo sư Osawa là một người khả kính, điềm đạm và khiêm tốn. Khi tôi gợi chuyện C60 và giải Nobel, ông mở nụ cười hiền hòa tâm sự "Không được Nobel tôi tiếc lắm chứ vì C60 là đứa con khoa học của tôi mà. Tôi tiên đoán C60 vào năm 1970 khi tôi vừa mới đươc bổ nhiệm Giảng Viên tại Đại Học Hokkaido. Vì tôi viết bằng tiếng Nhật và đăng bài báo cáo của tôi trên tạp chí Kagaku (Hóa Học) năm 1970 nên không được các đồng nghiệp quốc tế lưu ý đến. Một năm sau tôi viết lại thành một chương cho một quyển sách giáo khoa, cũng bằng tiếng Nhật". Tôi hỏi "Nếu thầy đã tiên đoán như vậy thì tại sao thầy không làm một thí nghiệm để kiểm chứng". Ông bộc bạch "Theo sự tính toán của tôi thì năng lượng hoạt tính của phản ứng tạo ra C60 rất cao. Tôi không thể hình dung được một chất xúc tác nào có thể hạ thấp năng lượng hoạt tính để phản ứng có thể xảy ra. Nhưng tôi đã hình dung được cấu trúc của nó trong một lần tôi nhìn đứa con trai của tôi đùa giỡn với trái bóng đá trong công viên gần nhà. Tôi cũng không nghĩ ra một phương tiện vật lý như dùng laser hoặc tia có năng lượng cao như nhóm Smalley đã làm để kích động phản ứng. Hơn nữa, ở thời điểm đó tôi mới vừa làm Giảng Viên nên cần phải tạo một dấu ấn nào đó trong phân khoa. Tôi cảm thấy việc tổng hợp C60 quá nhiều khó khăn nên đành chọn một hướng nghiên cứu khác". Có một điều làm cho ông được an ủi phần nào là trong bài diễn văn nhận giải Nobel Kroto, Curl và Smalley đã đề cập đến thành quả tiên phong của ông. Ông đã gởi tặng tôi bài báo cáo khoa học mang tính lịch sử nầy.
Như giáo sư Osawa đã trình bày, ở điều kiện và nhiệt độ bình thường việc tổng hợp C60 là một việc bất khả thi trên phương diện nhiệt động học (thermodynamics). Vì là một nhà hóa học thiên văn, Kroto tiếp cận vấn đề bằng một phương thức khác. Tháng 9 năm 1985, trong thời gian làm việc tại Rice University ông dùng tia laser của Curl và Smalley bắn vào than chì (laser ablation) để tái tạo sự tương tác của các tia vũ trụ và carbon trong không gian. Trong phổ ký khối lượng (mass spectrography) của các sản phẩm tạo thành xuất hiện hai đỉnh rất to chỉ định C60 và C70. Một bất ngờ nhưng Kroto, Curl và Smalley biết ngay đây là một khám phá đổi đời "kinh thiên động địa". Khi tia laser bắn vào một vùng nào đó của vật chất thì sẽ nâng nhiệt độ vùng đó lên cao hằng ngàn độ, thậm chí hằng chục ngàn độ. Ở nhiệt độ cao những chướng ngại nhiệt động học không còn là vấn đề và sự tạo thành C60 trở nên rất thuận lợi.
Việc khám phá C60 đã làm chấn động hầu hết mọi ngành nghiên cứu khoa học. Đặc biệt đối với môn hóa học hữu cơ nó đã tạo ra một nguồn sinh khí mới cho ngành nghiên cứu quá cổ điển nầy. Sự khám phá có tầm quan trọng hơn sự khám phá cấu trúc vòng nhân benzene của Kekule gần 150 năm trước. Benzene đã mở ra toàn bộ ngành hóa học của hợp chất thơm (aromatic compounds). C60 đã mở ra ngành "Hóa học fullerene" đi song song với sự phát triển của ngành công nghệ nano hiện nay.
Kroto, Curl và Smalley chỉ cho biết sự hiện hữu của C60, nhưng tổng hợp C60 cho việc nghiên cứu và ứng dụng phải đợi đến năm 1990 khi Krätschmer và Huffman đưa ra phương pháp tổng hợp với một sản lượng lớn. Nhờ vào phương pháp nầy đến năm 1997 đã có hơn 9000 hợp chất dựa trên fullerene được tổng hợp, hơn 20 000 báo cáo khoa học đăng trên các tạp chí chuyên ngành. Những người nghiên cứu hóa hữu cơ thường có nhiều nỗi ám ảnh và niềm đam mê đối với những cấu trúc phân tử đối xứng và cấu trúc lồng (cage structure), nên fullerene trở thành một lĩnh vực nghiên cứu mầu mỡ trong bộ môn nầy. Họ tổng hợp những fullerene cao hơn C60 như C70 (70 nguyên tử carbon, hình bóng bầu dục), C84 (84 nguyên tử carbon, hình quả đậu phọng). Họ kết hợp những nhóm chức (functional group) để chức năng hóa (functionalization) fullerene, gắn fullerene vào polymer để tổng hợp những dược liệu hay vật liệu cho áp dụng quang điện tử.
Lịch sử fullerene lâu đời hay non trẻ tùy vào hai cách nhìn khác nhau. Nghiên cứu fullerene thật ra rất ngắn chỉ hơn 20 năm kể từ ngày phổ ký khối lượng của Curl và Smalley cho biết sự hiện diện của C60 và C70, nhưng sự hiện hữu của fullerene có lẽ còn sớm hơn sự xuất hiện của loài người. Nó có trong những đám mây bụi trong vũ trụ, mỏ than, bồ hóng từ những ngọn nến lung linh hoặc những nơi khiêm tốn hơn như ở lò sưởi than, cái bếp nhà quê đen đui đủi vì lọ nồi... Người ta không tìm được C60 vì hàm lượng rất nhỏ và thường bị than vô định hình phủ lấp.
Khi màn bí mật C60 được vén mở, người ta nghĩ ngay đến những áp dụng thực tiễn của C60. Người ta kết hợp C60 với potassium (K) để tạo ra chất siêu dẫn hữu cơ ở nhiệt độ 18 K (-256 °C). Một số nhà nghiên cứu sinh học hy vọng có thể dùng C60 điều chế dược phẩm trị liệu bịnh AIDS. Trong vật lý, rất nhiều đề nghị áp dụng C60 để chế tạo những trang cụ (device) quang điện tử trong công nghệ cao. Tuy nhiên, trên mặt áp dụng các nhà khoa học thường mắc phải một căn bệnh chung là "lạc quan quá độ". Cấu trúc tròn trịa, đối xứng của C60 đã được tạp chí Science tôn vinh là "phân tử của năm 1991", nhưng cái xinh đẹp hấp dẫn không phải lúc nào cũng đưa đến kết quả thực tiễn hoàn mỹ.
Hai yếu tố làm C60 giảm tính thực tế là: (1) giá cả quá cao (giá cho 1 gram là vài trăm USD hoặc cao hơn cho tinh chất, so với giá vàng vào khoảng $10/g) và (2) C60 không hòa tan trong dung môi rất bất lợi cho việc gia công. Những hồ hởi ban đầu trong cộng đồng nghiên cứu khoa học dành cho fullerene bị dập tắc nhanh chóng vì những trở ngại nầy. Thậm chí ngay trong công nghệ "thấp", chẳng hạn dùng C60 như một chất phụ gia (additives) cho dầu nhớt làm giảm độ ma xát vẫn không địch nổi về giá cả và hiệu quả của những chất phụ gia thông thường. Tuần báo The Economist có lần phê bình "Cái công nghệ duy nhất mà quả bóng bucky đã thực sự cách mạng là sản xuất những bài báo cáo khoa học" (The only industry the buckyball has really revolutionized is the generation of scientific papers)!
Nhưng viễn ảnh của C60 trong áp dụng công nghệ không đến nổi tăm tối như các nhà bình luận kinh tế đã hấp tấp dự đoán. Sự kiên trì của những người làm khoa học lúc nào cũng cho thấy một niềm lạc quan của "những tia sáng ở cuối đường hầm". Gần đây công ty Nano-C (Mỹ) tuyên bố khả năng sản xuất hằng tấn C60 cho giới công nghệ. Một nhà máy thí điểm tại Nhật đang có khả năng chế tạo 40 tấn hằng năm và sẽ lên đến vài trăm tấn khi nhà máy được nâng cấp. Phương pháp sản xuất hàng loạt sẽ làm giảm giá C60 đến mức $5/g và có thể $1/g trong một tương lai không xa. Đây là một bước nhảy vĩ đại so với những năm đầu ở thập niên 90 khi người ta chỉ thu lượm vài miligram C60 ở mỗi lần tổng hợp khó khăn và giá cho mỗi gram có lúc lên đến $1500/g. Nhà sản xuất dự đoán nhu cầu C60 sẽ tăng nhanh trong vài năm tới cho việc chế biến dược liệu, dầu nhớt cao cấp và mỹ phẩm trang điểm.
Câu chuyện cô bé Lọ Lem mãi mãi là một câu chuyện tình làm thổn thức nhiều con tim trẻ. Cô bé bị bà mẹ ghẻ hành hạ lúc nào cũng phải quét dọn lò sưởi nên mặt mũi dính đầy lọ nồi. Bà Tiên với chiếc đũa thần biến nàng thành một tiểu thư đài các được trang điểm cực kỳ diễm lệ để dự những buổi khiêu vũ của chàng hòang tử độc thân đa tình. Có lẽ nàng được trang điểm với những mỹ phẩm chứa C60, nàng sẽ đeo những chuỗi kim cương carbon vô giá. Nhưng sau nửa đêm nàng sẽ trở lại cô bé đầy lọ.... Nhìn từ quan điểm của hóa học carbon, chuyện tình khi đượm tính khoa học có thể làm thất vọng nhiều tâm hồn lãng mạn nhưng tất cả chỉ là câu chuyện carbon ở những trạng thái khác nhau!
Trở lại thực tế của thế kỷ 21. Khả năng áp dụng fullerene trong công nghệ cao liên quan đến quang học và quang điện tử đang được tích cực khảo sát ở nhiều cơ quan nghiên cứu trên thế giới. Tạp chí Journal of Materials Chemistry xuất bản một số đặc biệt tổng kết những thành quả mới nhất của nghiên cứu fullerene. Một trong ứng dụng có tầm quan trọng đặc biệt là đặc tính photovoltaic của C60 tức là khả năng biến năng lượng mặt trời thành điện còn gọi là pin mặt trời. Loại pin nầy được chế tạo từ C60 và polymer dẫn điện (electrically conducting polymers). Mặc dù hiệu suất chuyển hoán năng lượng vẫn chưa bì kịp pin mặt trời silicon đang được phổ biến trên thương trường, loại pin mặt trời hữu cơ nầy sẽ cho những đặc điểm không có ở silicon như dễ gia công, giá rẻ, nhẹ, mỏng và mềm.